A feasible descent cone method for linearly constrained minimization problems
نویسندگان
چکیده
منابع مشابه
Direct search based on probabilistic feasible descent for bound and linearly constrained problems
Direct search is a methodology for derivative-free optimization whose iterations are characterized by evaluating the objective function using a set of polling directions. In deterministic direct search applied to smooth objectives, these directions must somehow conform to the geometry of the feasible region and typically consist of positive generators of approximate tangent cones (which then re...
متن کاملAccelerated Bregman Method for Linearly Constrained ℓ1-ℓ2 Minimization
We consider the linearly constrained `1-`2 minimization and propose the accelerated Bregman method for solving this minimization problem. The proposed method is based on the extrapolation technique, which is used in accelerated proximal gradient methods studied by Nesterov, Nemirovski, and others, and the equivalence between the Bregman method and the augmented Lagrangian method. O( 1 k2 ) conv...
متن کاملPattern Search Methods for Linearly Constrained Minimization
We extend pattern search methods to linearly constrained minimization. We develop a general class of feasible point pattern search algorithms and prove global convergence to a KarushKuhn-Tucker point. As in the case of unconstrained minimization, pattern search methods for linearly constrained problems accomplish this without explicit recourse to the gradient or the directional derivative of th...
متن کاملA Sequential Ascending Parameter Method for Solving Constrained Minimization Problems
In this paper, a method for solving constrained convex optimization problems is introduced. The problem is cast equivalently as a parametric unconstrained one, the (single) parameter being the optimal value of the original problem. At each stage of the algorithm the parameter is updated and the resulting subproblem is only approximately solved. A linear rate of convergence of the parameter sequ...
متن کاملLinearly Constrained Problems
The aim of this paper is to study the convergence properties of the gradient projection method and to apply these results to algorithms for linearly constrained problems. The main convergence result is obtained by defining a projected gradient, and proving that the gradient projection method forces the sequence of projected gradients to zero. A consequence of this result is that if the gradient...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1994
ISSN: 0898-1221
DOI: 10.1016/0898-1221(94)00150-2